当前位置:首页 > 过刊浏览->2024年第50卷第1期
基于时序驱动的管道结蜡程度预测及清管效果评价
Prediction of pipeline wax formation degree and evaluation of pigging effect based on timing drive
浏览(380) 下载(5)
- DOI:
- 作者:
- 姜兆波, 姚佳杉, 高晓楠, 马静, 刘倩, 梁昌晶
JIANG Zhaobo, YAO Jiashan, GAO Xiaonan, MA Jing, LIU Qian, LIANG Changjing
- 作者单位:
- 1. 中国石油华北油田公司第一采油厂, 河北任丘 062552;2. 华北石油通信有限公司, 河北任丘 062552;3. 中国石油华北油田公司第三采油厂, 河北河间 062450
- 关键词:
- 时序; 结蜡程度; 清管效果; K-means; CNN
timing;degree of wax formation;pigging effect;K-means;CNN
- 摘要:
- 为避免凭经验盲目确定清管周期,造成过度清管现象的发生,基于结蜡过程的缓慢时序性,在研究生产数据参数与结蜡程度关系的基础上,通过改进K-means算法确定不同时序下的结蜡程度,并将数据引入卷积神经网络(CNN),利用CNN模型的特征提取和自适应学习能力,实现不同结蜡程度持续时间的在线更新,依据结蜡等级和清管周期的变化构建清管效果评价指数模型,实现了清管作业的事前预警。结果表明,不同管道在完整结蜡周期内的等级时间不同,周期长短也不同,体现了输入参数差异引起的结蜡程度不同,改进Kmeans算法将结蜡程度分为4个等级;本文模型的总体平均误差为0.781 d,小于RNN模型和LSTM模型的2.025 d、1.225 d;待评价管道的清管效果评价指数为0.828,说明本次清管效果良好。研究结果可为管道完整性管理水平的提升提供实际参考。
Determining the pigging cycle by field manual experience has some blindness.To avoid excessive pigging, based on the slow timing of the wax formation, this paper studies the relationship between production data parameters and the degree of wax formation. Then, the paper applies the improved K-means algorithm to determine the degree of wax formation in different time series and introduces the data into the convolutional neural network (CNN). With the feature extraction and adaptive learning ability of the CNN model, it updates online different durations of wax formation degrees.The pigging effect evaluation index model is built according to the change in wax formation degree and pigging cycle to realize the early warning of pigging operation. The results show that different pipelines have various grade time and cycle lengths in the complete wax formation cycle, which reflects the difference in wax formation degree caused by the difference in input parameters. The improved K-means algorithm divides the wax formation degree into 4 grades. The overall average error of the proposed model is 0.781 d, which is smaller than 2.025 d and 1.225 d of the RNN model and LSTM model. The pigging effect evaluation index of the pipeline to be evaluated is 0.828, indicating a sound pigging effect. The research results can provide a practical reference for improving the management level of pipeline integrity.